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1: Abstract
This report focuses on the Action Classification Problem for CS4342 final project. The data is a

series of experimental sessions during which multiple subjects received a cue and performed an
action (denoted by classes 2-5). Class 1 corresponds to times the subject was instructed to sit
passively. For each action, there are 24 features (column 2 to 24). We implement 8 types of
models with KK-10 in our efforts to get a good classifier. Furthermore, we analyse data using
visualization, and then analyse the strengths and weaknesses of the algorithms we use to narrow

down one which would be good for this particular dataset.

2: Methodology
We used Matlab to produce our classifier models. Within Matlab, we visualized the data by

using the ‘plot’ command for the training set of data, as well as the testing set of data. To
produce our classifier models, we used the Classification Learner application. We put the raw
training data into the learner and ran it through eight different models: Naive Bayes, K-Nearest
Neighbors, Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA),
Support Vector Machines (SVM), Bagged Trees, Subspace Discriminant, and Boosted Trees.
Afterwards, we exported each of these models, and made new predictions for the testing data set
with the following Matlab command:

yfit = trainedDataModel.predictFcn (testingDataSet);

Our results are displayed below in section 4 of this paper. We included the scatter plot, the
accuracy, and the confusion matrix of each model so we can determine which of these models

produces the best results.
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4: Data Cleaning

Classifier Model 1: Naive Bayes
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4\ Classification Leamer - Confusion Matrix
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Classifier Model 2: K-Nearest Neighbors
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Classifier Model 3: Quadratic Discriminant Analysis (QDA)
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Classifier Model 4: Linear Discriminant Analysis (LDA)
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Classifier Model 5: Support Vector Machines

#\ Classification Learner - Scatter Plot
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Classifier Model 6: Bagged Trees
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o\ Classification Learer - Confusion Matrix
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Classifier Model 7: Subspace Discriminant
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o\ Classification Learer - Confusion Matrix
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Classifier Model 8: Boosted Trees
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A\ Classification Learner - Confusion Matrix
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The first classifier model, Naive Bayes, has an accuracy of 78.9%. Naive Bayes predicts a new

observation by looking up the class probabilities in a probability table that is based off of feature

values. Some advantages of using the Naive Bayes model are that it scales data very well, and

the algorithm is clean and straightforward. However, a large disadvantage of Naive Bayes is that

it assumes conditional independence, meaning that it assumes all input features are independent

of each other. This does not always occur with data in the real world.

The second classifier model, K-Nearest Neighbors (KNN), has an accuracy of 86.2%. KNN

looks at the K points in the training set that are nearest to the test input, counts how many

members of each class are in this set, and returns that fraction as an estimate. Some advantages

of using KNN is that the training is completed very quickly. However, some disadvantages of



KNN is that it requires a large storage space, it is sensitive to noise, and the actual testing is

slow.

The third classifier model, Quadratic Discriminant Analysis (QDA), has an accuracy of 90.3%.
QDA is an extension of the model, LDA, which is described in the next paragraph. The unique
part of QDA is that each class uses it own estimate of variance or covariance if there are multiple
input variables. QDA is used when individual classes exhibiting distinct covariances is prior
knowledge. Therefore, it’s useful for multi-class problems. However, it is not useful for

dimensionality reduction.

The fourth classifier model, Linear Discriminant Analysis (LDA), has an accuracy of 87.2%.
LDA makes predictions by estimating the probability that a new set of inputs belongs to each
class. The class with the highest probability is the output class. An advantage of LDA is that it
can perform supervised dimensionality reduction by putting the input data in a linear subspace
that maximizes separation between classes. However, a disadvantage of LDA is that it only

works for data with multiple classes.

The fifth classifier, Support Vector Machines, has an accuracy of 89.3%. We used a linear SVM,
one which makes a simple linear separation between the classes, using the linear kernel. This is
the easiest SVM to interpret. The advantages of SVM are that they scale relatively well to high
dimensional data and the SVM models have generalization in practice as such the risk of
overfitting is less. A few disadvantages of SVM are that it takes a long time to train with large
datasets. In addition its difficult to understand and interpret the final model, variable weights and

individual impact.



A Linear SVM

Our sixth classifier, Bagged Trees, are bootstrapped aggregate ensemble of fine trees, slow and
memory intensive for large data sets, our model has an accuracy of 83.8%. Bootstrap
Aggregation is a general procedure that can be used to reduce the variance for those algorithms
that have high variance. A few algorithms that have a high variance are decision trees, like
classification and regression trees. Decision trees are sensitive to the specific data on which they
are trained. If the training data is changed the resulting decision tree can be quite different and in
turn the predictions can be quite different. Bagging is the application of the Bootstrap procedure
to a high-variance machine learning algorithm, typically decision trees. Generally this method
has a few advantages. First, it handles higher dimensionality data very well. Secondly, it can
handle missing values and maintains accuracy for missing data. But as a downside since the final
prediction is based on the mean predictions from subset trees, it won’t give precise values for the

regression model.

Our seventh classifier, subspace discriminant, has an accuracy of 85.4%. A subspace

discriminant is an ensemble of discriminant classifiers using the random subspace algorithm. Its



advantages are that its good for many predictors, relatively fast for fitting and prediction and low

on memory usage. But as a downside its accuracy values varies largely based on the data.

Our eighth and final classifier, boosted trees, had an accuracy of 82.4%. Boosted trees create an
ensemble of medium decision trees using the AdaBoost algorithm, compared to bagging, boosted
trees take relatively little time and memory but need more ensemble members. Boosting is
another ensemble technique to create a collection of predictors. In this technique, learners are
learned sequentially with early learners fitting simple models to the data and then analyzing data
for errors. In other words, we fit consecutive trees and at every tick, the aim is to solve for
net-error from the previous tree. When an input is misclassified by a hypothesis, its weight is
increased so that the next hypothesis is more likely to classify it correctly. By combining the
whole set at the end converts weak learners into better performing model. A few advantages of
this model are that it supports different loss functions, in addition it works well with interactions.

Its disadvantage is that its prone to overfitting and requires careful tuning of the parameters.

Our best result was achieved using the QDA model giving us the following result.

precision recall
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